January 29, 2025
Previously, we were interested in GDP per capita as a predictor of democracy.
Now, let’s consider another predictor: polarization (also measured by V-Dem)
How do we interpret the intercept and the slope estimate?
How are we figuring out what the “best” line is?
\[\hat{Y_i} = a + b_1*Polarization + b_2*GDPpc\]
OLS is searching for combination of \(a\), \(b_1\), and \(b_2\) that minimize sum of squared residuals
linear_reg() %>%
set_engine("lm") %>%
fit(v2x_libdem ~ v2cacamps + lg_gdppc, data = modelData) %>%
tidy()
# A tibble: 3 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.182 0.0378 4.81 3.32e- 6
2 v2cacamps -0.0539 0.0120 -4.51 1.19e- 5
3 lg_gdppc 0.100 0.0147 6.82 1.50e-10
\[\hat{Y_i} = a + b_1*Polarization + b_2*GDPpc\]
\[\hat{Y_i} = 0.18 + -0.05*Polarization + 0.10*GDPpc\]
\[\hat{Y_i} = a + b_1*Polarization + b_2*GDPpc\]
\[\hat{Y_i} = 0.18 + -0.05*Polarization + 0.10*GDPpc\]
\[\hat{Y_i} = a + b_1*Polarization + b_2*GDPpc\]
\[\hat{Y_i} = 0.18 + -0.05*Polarization + 0.10*GDPpc\]
\(b_1\) is the impact of a 1-unit change in polarization on the predicted level of Y, holding GDP per capita fixed (all else equal)
\[\hat{Y_i} = a + b_1*Polarization + b_2*GDPpc\]
\[\hat{Y_i} = 0.18 + -0.05*Polarization + 0.10*GDPpc\]
conflictData <- create_stateyears(system = 'gw') %>%
filter(year %in% c(1946:1999)) %>%
add_ucdp_acd(type=c("intrastate"), only_wars = FALSE) %>%
add_democracy() %>% ## adds democracy measures
add_creg_fractionalization() %>% ## adds ethnicity and religious fractionalization
mutate(democracy = ifelse(v2x_polyarchy > .5, "Democracy", "Autocracy"))
linear_reg() %>%
set_engine("lm") %>%
fit(ucdponset ~ democracy + ethfrac, data = conflictData) %>%
tidy()
# A tibble: 3 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.0160 0.00364 4.40 0.0000111
2 democracyDemocracy -0.0139 0.00398 -3.50 0.000475
3 ethfrac 0.0186 0.00651 2.86 0.00425
What is predicted probability of civil war onset for a country that is a democracy and has an ethfrac
score of 0.5?
Save model as an object
Remove the tidy() so it is saved as a model object
predict()
to generate predicted valuesethfrac
changed from 0.25 to 0.75?predData3 <- data.frame(democracy = c("Autocracy", "Autocracy", "Autocracy", "Autocracy",
"Democracy", "Democracy", "Democracy", "Democracy"),
ethfrac = c(.2, .4, .6, .8,
.2, .4, .6, .8)
)
predData3
democracy ethfrac
1 Autocracy 0.2
2 Autocracy 0.4
3 Autocracy 0.6
4 Autocracy 0.8
5 Democracy 0.2
6 Democracy 0.4
7 Democracy 0.6
8 Democracy 0.8
democracy ethfrac .pred
1 Autocracy 0.2 0.019751861
2 Autocracy 0.4 0.023477869
3 Autocracy 0.6 0.027203877
4 Autocracy 0.8 0.030929885
5 Democracy 0.2 0.005843543
6 Democracy 0.4 0.009569551
7 Democracy 0.6 0.013295559
8 Democracy 0.8 0.017021567
ggplot(plotData, aes(x = ethfrac, y = .pred, color = democracy)) +
geom_line() + theme_bw() + labs(x = "Ethnic Fractionalization",
y = "Predicted Probability of Civil War Onset", color = "Regime",
title = "Predicted Probabilities of Civil War Onset") + scale_color_viridis_d(option = "B", begin = .2, end = .6) + ylim(0, 0.04)